University of Taipei:Item 987654321/10874
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 2471/17084 (14%)
Visitors : 3184589      Online Users : 901
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/10874


    Title: A new scale-free network model for simulating and predicting epidemics
    Authors: Chen-Wei Liang;古建國;Chien-Kuo Ku;Jeng-Jong Liang
    Contributors: 臺北市立教育大學應用物理暨化學學系暨碩士班
    Keywords: Epidemic courses;Modeling;Epidemic network;Disease prevention
    Date: 2013-01
    Issue Date: 2013-12-27 18:10:00 (UTC+8)
    Abstract: The course of epidemics often resembles a scale-free network, but some specific elements should be considered in developing a new model. This study introduces a time-shifting and discontinuous forcing function H into the scale-free network model to fit the specific period and intensity of the infection, and redefines the probability p as abortive infection rate. For the non-human vectors or hosts, three new factors (new connectivity Ki(t), new links M, and time delay τ) were introduced in the proposed model of this study. The simulation results of six types of epidemic transmissions show that the proposed Scale-Free Epidemic Models, SFE-1 and SFE-2, are accurate. SFE-1 model and SFE-2 model are useful for the transmission categories from human and insects/vertebrates, respectively. Further comparisons of different races/ethnicities and different transmission categories of AIDS cases in the United States were also analyzed. Both SFE models can be used to predict epidemics and can suggest the results more clearly, irrespective of whether the epidemics are under control. Therefore, the proposed SFE models can help the government determine the level of caution required and predict the results of policy decisions, thus helping to balance socioeconomic and health concerns.
    Relation: Journal of Theoretical Biology,Vol. 317,Pages 11-19
    Appears in Collections:[Department of Applied Physics and Chemistry] Periodical Articles

    Files in This Item:

    There are no files associated with this item.



    All items in uTaipei are protected by copyright, with all rights reserved.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback