University of Taipei:Item 987654321/14602
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 2471/17084 (14%)
造访人次 : 3186307      在线人数 : 945
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    University of Taipei > 理學院 > 資訊科學系 > 期刊論文 >  Item 987654321/14602


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/14602


    题名: Stability analysis and controller synthesis for discrete uncertain singular fuzzy systems with distinct difference matrices in the rules
    作者: Huanga, Chih-Peng;黃志鵬
    关键词: T-S fuzzy model;discrete singular system;stability analysis;parallel distributed compensation (PDC);linear matrix inequality (LMI)
    日期: 2015-09
    上传时间: 2015-10-29 15:15:02 (UTC+8)
    摘要: This paper mainly studies an extended discrete singular fuzzy model incorporating the multiple difference matrices in the rules and discusses its stability and design issues. By embracing additional algebraic constraint, traditional discrete Takagi-Sugeno (T-S) fuzzy model can be extended to a generalised discrete singular Takagi-Sugeno (GDST-S) model with individual difference matrices Ei in the locally singular models, where it can describe a larger class of physical or non-linear systems. Based on the linear matrix inequality (LMI) approach, we focus on deriving some explicit stability and design criteria expressed by the LMIs for the regarded system. Thus, the stability verification and controller synthesis can be performed by the current LMI tools. Finally, some illustrative examples are given to illustrate the effectiveness and validity of the proposed approach.
    關聯: International Journal of Systems Science,v.45n.9,p.1830-1843
    显示于类别:[資訊科學系] 期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在uTaipei中所有的数据项都受到原著作权保护.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈