University of Taipei:Item 987654321/15269
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 1935/17148 (11%)
造访人次 : 4699938      在线人数 : 624
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/15269


    题名: Applications Related to the Generalized Seidel Matrix
    作者: Chen, Kwang-Wu;陳光武
    日期: 2005
    上传时间: 2016-04-28 15:29:17 (UTC+8)
    關聯: Let α, β be any numbers. Given an initial sequence a 0, m (m = 0, 1, 2, ⋯), define the sequences an,m (n ≥ 1) recursively by an, m = αan-1,m + βan-1,m+1, for n ≥ 1, m ≥ 0. We call the matrix (a n,m)n,m≥0 as a generalized Seidel matrix with a parameter pair (α,β). If α = β= 1, then this matrix is the classical Seidel matrix. For various different parameter pairs (α, β) we will impose some evenness or oddness conditions on the exponential generating functions of the initial sequence a0,m and the final sequence an,0 of a genaralized Seidel matrix (i.e., we require that these generating functions or certain related functions are even or odd). These conditions imply that the initial sequences and final sequences are equal to well-known classical sequences such as those of the Euler numbers, the Genocchi numbers, and the Springer numbers. As applications, we give a straightforward proof of the continued fraction representations of the ordinary generating functions of the sequence of Genocchi numbers. And we also get the continued fractions representations of the ordinary generating functions of the Genocchi polynomials, Bernoulli polynomials, and Euler polynomials. Lastly, we give some applications of congruences for the Euler polynomials.
    显示于类别:[數學系(含數學教育碩士班)] 期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在uTaipei中所有的数据项都受到原著作权保护.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈