University of Taipei:Item 987654321/15772
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 2471/17084 (14%)
造访人次 : 3183808      在线人数 : 1040
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    University of Taipei > 理學院 > 資訊科學系 > 期刊論文 >  Item 987654321/15772


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/15772


    题名: Fuzzy support vector regression model for forecasting stock market volatility
    作者: Hung, Jui-Chung;洪瑞鍾
    贡献者: 臺北市立大學資訊科學系
    关键词: Support vector regression;forecasting volatility;fuzzy system;genetic algorithm;clustering
    日期: 2016-08-13
    上传时间: 2017-07-24 11:27:52 (UTC+8)
    摘要: Stock market volatility exhibits characteristics such as clustering and time-varying fluctuations. This paper proposes a two-stage method for addressing these concerns. The involved procedure is as follows: First, a fuzzy system is used to analyze clustering regimes according to the size of fluctuations. Second, the clustering regimes of Stage I are used to establish a support vector regression (SVR) model, which is used to reduce the time-varying complexity. However, the fuzzy-SVR model combines the parameters of membership functions and SVR models, further complicating the problem. Thus, this paper presents parallel research based on a genetic algorithm (GA) for estimating the parameters of the membership functions and SVR model. Data from four stock markets—the Taiwan Stock Exchange weighted stock index (Taiwan), the NASDAQ Composite index, the Hang Seng index (Hong Kong), and the Shanghai Composite index (Shanghai)—were analyzed in this study to illustrate the performance of the proposed model. According to the simulation results, the forecasting of out-of-sample volatility performance was significantly improved when the model accounted for the behavioral effect of both clustering and time-varying fluctuations.
    關聯: Journal of Intelligent and Fuzzy Systems, vol. 31, no. 3, pp. 1987-2000
    显示于类别:[資訊科學系] 期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在uTaipei中所有的数据项都受到原著作权保护.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈