English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2471/17084 (14%)
造訪人次 : 3181357      線上人數 : 702
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    University of Taipei > 理學院 > 資訊科學系 > 期刊論文 >  Item 987654321/15779


    請使用永久網址來引用或連結此文件: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/15779


    題名: Applying a combined fuzzy systems and GARCH model to adaptively forecast stock market volatility
    作者: Hung, Jui-Chung;洪瑞鍾
    貢獻者: 臺北市立教育大學資訊科學系
    關鍵詞: Genetic algorithm;Fuzzy systems;Stock market forecast;GARCH model;Recursive least-squares
    日期: 2011-07
    上傳時間: 2017-07-24 11:28:02 (UTC+8)
    摘要: This paper studies volatility forecasting in the financial stock market. In general, stock market volatility is time-varying and exhibits clustering properties. Thus, this paper presents the results of using a fuzzy system method to analyze clustering in generalized autoregressive conditional heteroskedasticity (GARCH) models. It also uses the adaptive method of recursive least-squares (RLS) to forecast stock market volatility.

    The fuzzy GARCH model represents a joint estimation method; the membership function parameters together with the GARCH model parameters make this problem of stock market is highly nonlinear and complicated. This study presents an iterative algorithm based on a genetic algorithm (GA) to estimate the parameters of the membership functions and the GARCH models. In this paper, the GA method is employed to identify a global optimal solution with a fast convergence rate in the context of the fuzzy GARCH model estimation problem studied here. Based on simulation results, we determined that both the estimation of in-sample and the forecasting of out-of-sample volatility performance are significantly improved when the GARCH model considers both the clustering effect and the adaptive forecast.
    關聯: Applied Soft Computing,vol.11,p3938-3945
    顯示於類別:[資訊科學系] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在uTaipei中所有的資料項目都受到原著作權保護.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋