University of Taipei:Item 987654321/15892
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 1922/17135 (11%)
造訪人次 : 4220243      線上人數 : 771
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    University of Taipei > 理學院 > 資訊科學系 > 期刊論文 >  Item 987654321/15892


    請使用永久網址來引用或連結此文件: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/15892


    題名: Efficiently Extracting and Classifying Objects for Analyzing Color Documents
    作者: Tsai, C. M.;蔡俊明;Lee, H. J.
    貢獻者: 臺北市立教育大學資訊科學系
    日期: 2011
    上傳時間: 2017-07-25 09:58:39 (UTC+8)
    摘要: Conventional objects extraction method are not efficient for color document image with large graphics. For example, the projection profile and connected component based methods scanning the large graphics many times. To display the large graphics are extracted, conventional methods use rectangle to represent it. Thus, scanning into the large graphics is time-consuming. In this paper, a novel system for efficiently analyzing color documents is proposed to solve abovementioned problem. The proposed system includes color transformation, background color determination, objects extraction by top-down method, and objects classification without parameters. The proposed color document analysis system is efficient because it scans only background pixels such that the temporal complexity is O (NB), where NB is the total number of background color pixels. Results of this study demonstrate that this system is more effective and efficient than other methods. Moreover, the proposed algorithm can be run in an embedded environment (such as a mobile device) and processed in real-time system due to its simplicity and efficiency
    關聯: Machine Vision and Applications, Vol. 22, No. 1, pp. 21-37
    顯示於類別:[資訊科學系] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在uTaipei中所有的資料項目都受到原著作權保護.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋