University of Taipei:Item 987654321/16972
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 2471/17084 (14%)
造访人次 : 3183697      在线人数 : 976
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    University of Taipei > 理學院 > 資訊科學系 > 期刊論文 >  Item 987654321/16972


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/16972


    题名: Post-Modern Portfolio Theory for Information Retrieval
    作者: Tsai, Ming-Feng;Wang, Chuan-Ju;王釧茹
    贡献者: 臺北市立教育大學資訊科學系
    关键词: Retrieval models;Optimization;Semivariance
    日期: 2012
    上传时间: 2019-02-14
    摘要: Information Retrieval (IR) aims to discover relevant information according to a user's information need. The classic Probability Ranking Principle (PRP) forms the theoretical basis for probabilistic IR models. This ranking principle, however, neglects the uncertainty introduced through the estimations from retrieval models. Inspired by the Post-Modern Portfolio Theory (PMPT), this paper proposes a mean-semivariance framework to handle the uncertainty. The proposed framework not only deals with the uncertainty but has the ability to distinguish bad surprises (downside uncertainty) and good surprises (upside uncertainty) when optimizing a ranking list. The experimental results shows that the proposed method improves the IR performance over the PRP baseline in terms of most of IR evaluation metrics; moreover, the results suggest that the mean-semivariance framework can further boost the top-position ranking quality.
    關聯: Procedia Computer Science,Vol. 13,P.80-85
    显示于类别:[資訊科學系] 期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在uTaipei中所有的数据项都受到原著作权保护.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈