English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2471/17084 (14%)
造訪人次 : 3181493      線上人數 : 771
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    University of Taipei > 理學院 > 資訊科學系 > 會議論文 >  Item 987654321/16974


    請使用永久網址來引用或連結此文件: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/16974


    題名: Corporate Default Prediction via Deep Learning
    作者: Yeh, Shu-Hao;Wang, Chuan-Ju;王釧茹;Tsai, Ming-Feng
    貢獻者: 臺北市立大學資訊科學系
    關鍵詞: default prediction;deep learning
    日期: 2014-07
    上傳時間: 2019-02-14
    摘要: This paper provides a new perspective on the default prediction problem using deep learning algorithms. Via the advantages of deep learning, the representable factors of input data will no longer need to be explicitly extracted, but can be implicitly learned by the deep learning algorithms. We consider the stock returns of both default and solvent companies as input signals and adopt one of the deep learning architecture, Deep Belief Networks (DBN), to train the prediction models. The preliminary results show that the proposed approach outperforms traditional machine learning algorithms.
    關聯: The 34th International Symposium on Forecasting (ISF’14),Rotterdam,2014
    顯示於類別:[資訊科學系] 會議論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在uTaipei中所有的資料項目都受到原著作權保護.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋