University of Taipei:Item 987654321/2711
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 3324/17070 (19%)
造访人次 : 1482684      在线人数 : 489
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    University of Taipei > 理學院 > 資訊科學系 > 期刊論文 >  Item 987654321/2711


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/2711


    题名: Performance Analysis of Earliest-Due-Date Scheduling Discipline for ATM Switches
    作者: LIANG S. T.
    YUANG M. C.
    梁世聰
    贡献者: 臺北市立教育大學資訊科學系
    关键词: Telecommunication network
    Teletraffic
    Asynchronous transmission
    Traffic congestion
    Service quality
    Performance analysis
    Scheduling
    Switching circuit
    Due date
    Queueing network
    Arrival process
    Renewal process
    Time analysis
    Modeling
    日期: 1998
    上传时间: 2009-08-04 12:31:32 (UTC+8)
    摘要: Asynchronous transfer mode (ATM) networks are expected to support a diverse mix of traffic sources with different quality-of-service (QOS) requirements. To providing satisfactory QOS to all network users, ATM networks are often required to prioritize users' traffic based on their service requirements. This paper initially examines several existing scheduling disciplines that offer delay guarantees for multiple service classes. Among them, the earliest-due-date (EDD) discipline has been regarded as one of the most promising scheduling disciplines. The EDD discipline schedules the departure of a cell belonging to a call based on the delay priority assigned for that call during the call set-up. Considering n delay-based service classes associated with n urgency numbers D0 to Dn-1 (D0 ≤ D1 ≤…≤ Dn-1) respectively, EDD allows a class-i cell to precede any class-j (j > i) cell arriving not prior to (Dj - Di)-slot time. The main goal of the paper is to determine the urgency numbers (Di's), based on a decent queueing analysis, in an attempt to offer satisfactory delay guarantees for higher priority calls while incurring only minimal delay degradation for lower priority calls. In the analysis, we derive the system-time distributions assuming two service classes, based on a discrete-time, single-server queueing model with heterogeneous arrivals including renewal and nonrenewal arrival processes. On the basis of the analysis, the urgency numbers (Di's) can be dynamically and effectively adjusted to provide a ninety-nine percentile delay guarantee for high priority calls under various traffic loads. Finally, we demonstrate the accuracy of the analysis via simulation results.
    關聯: International journal of modelling & simulation, v18(4), p.273-281
    显示于类别:[資訊科學系] 期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在uTaipei中所有的数据项都受到原著作权保护.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈