English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2471/17084 (14%)
造訪人次 : 3181182      線上人數 : 592
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    University of Taipei > 理學院 > 資訊科學系 > 期刊論文 >  Item 987654321/4705


    請使用永久網址來引用或連結此文件: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/4705


    題名: Adaptive Fuzzy-GARCH model applied to forecasting the volatility of stock markets using particle swarm optimization
    作者: Jui-Chung Hung
    洪瑞鍾
    貢獻者: 臺北市立教育大學資訊科學系
    關鍵詞: Particle swarm optimization
    Fuzzy systems
    GARCH model
    Forecasting volatility
    Adaptive algorithm
    日期: 2011-10-15
    上傳時間: 2011-11-30 11:01:46 (UTC+8)
    摘要: Fluctuations in the stock market follow the principle of volatility clustering in which changes are cataloged by similarity; as such, large changes tend to follow large changes, and small changes tend to follow small changes. This clustering is one of the major reasons why many generalized autoregression conditional heteroscedasticity (GARCH) models do not forecast the stock market well. In this paper, an adaptive Fuzzy-GARCH model with particle swarm optimization (PSO) is proposed to solve this problem.

    The adaptive Fuzzy-GARCH model refers to both GARCH models and the parameters of membership functions, which are determined by the characteristics of market itself. Here, we present an iterative algorithm based on PSO to estimate the parameters of the membership functions. The PSO method aims to achieve a global optimal solution with a rapid convergence rate. The three stock markets of Taiwan, Japan, and Germany were analyzed to illustrate the performance of the proposed method.
    關聯: Information Sciences
    Volume 181, Issue 20
    Pages 4673-4683
    顯示於類別:[資訊科學系] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在uTaipei中所有的資料項目都受到原著作權保護.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋