摘要: | 中文摘要 目前國內外在研究人體運動技術,大都採用影片分析法,人體重心是分析的重點,它把每張影片上之人體影像計算出其重心,在將重心標示在座標軸上,依照重心點間的關係求出速度、角度…等變化,而影響影片人體影像中心的計算,主要有兩個因素: 1.肢體重量。 2.肢體重心位置。 由於這些肢體數值目前我國尚未有人進行研究,所以直到目前為止,國內從事人體運動技術的影片分析,都利用國外測量值,但我們知道外國人的體型,身體比例……等,與國人有一些差異,因此利用他們的數值,來計算國人受試者的重心,是否會有差異?而差異有多大?我們應該知道。 本研究之目的在於就現有國外各種肢體資料中,選擇廣為研究者引用之各種人體不同肢體重量及重心距離百分比數值,求出五位受試者(M1…M5)重心,與五位受試者用大反應板(R.B)所求得之實際重心間的差異作一比較,並利用電腦分析各數值,以尋求一最接近受試者重心的肢體重量及重心距雕之適用資料,和一種考驗這些資料的方法。 本文所考驗的肢體資料有: (一)DEMPSTER屍體解剖資料。(1955)[DEM] (二)CLAUSER ET AL.屍體解剖資料。(1969)[CLA] (三)DEMPSTER肢體浸水資料。(1955)〔四種體型ROT.MUS.THI.MED〕 (四)STANLEY PLAGENHEF ET AL.肢體浸水資料。(l983)[STA] 經過整理及分析比較實驗資料得到下列結果: (1)重心點X:七種肢體數值所計算的每一位受試者重心X點之平均值,M1至M5與反應板(R.B)間的差距在+0.06CM到-0.90CM,換言之,間接法的計算值都大於直接法的測量值,與人反應板相差最小為ROT及MED,差距-0.61CM,最大為STA,差距-0.70CM。 (2)重心點Y:依據傳統慣用座標定位法,沿著身高的Y軸方向,因受肢體大小的不同,所得的座標點Y亦不同,因此Y點是用來判斷大反應板與肢體數值間重心值的依據。七種肢體數值所計算的每一位受試者重心,Y點之平均值,M1至M5與反應板(R.B)間的差距在-0.32CM到-3.08CM,換言之,間接法的計算值Y也都大於直接法的測量值Y,與大反應板相差最小為CLA,差距-0.68CM,最大為DEM,差距-4.61CM。 (3)總合以上結果,下式表示各肢體數值間的差異:R.B<CLA<ROT<MED<THI<STA<MUS<DEM (4)由第(3)項差異順序,得知DEMPSTER四種體型的肢體浸水值,以肥胖型(ROT)最接近大反應板值,依次為中間型,(MED)瘦長型(THI)及肌肉型(MUS)。
Abstract In the biomechanics of sports research, the methods that were commonly used to analyse sports techniques were cinematography and mathematical analysis. They calculated the image center of gravity of each frame, and then, according to the coordinate relationship of the frame, to find out the velocity, acceleration and-other parameters. But the first important thing is how to calculate the body center of gravity? It needs two parameters, the segmental weight and the segmental center of gravity length. Until now, these segmental parameters are not built in Taiwan, therefore, to analyse any sports techniques, our researchers have to use those segmental parameters built by other countries. As we know, the different human races have different somatotype and segmental length ratio..etc. So when we use those segmental parameters, we must find out how large they are? Do they have any different effects. The purpose of this study is to compare all the parameters in different literatures that we selected. The following segmental parameters are used in comprison: 1. Dempster cadaver dissected data (1955 Dem). 2. Clauser et al. dissected data (1969 Cla). 3. Dempster segmental immersion data with four somatotype [Rotund (Rot), muscular (Mus), Thin (Thi), Median (Med)] (1955). 4. Stanley plagenhoef et al. segmental immersion data (1983 Sta). The procedures of this study are to use a large triangular reaction board with five subjects kie with a stand position. Then, land-marks posed on their joints that divided into 13 segments and are photographed from a top-view. Formulas are used to calculate the center of gravity of images then to compare with the reaction board center of gravity of subjects. In all data passed through the calculation and comparison proce- dure, we find out the difference of means: R.b < Cla < Rot < Med < THi < Sta < Mus < Dem In fact, among different data, Clauser et al. cadaver dissected data is suitable for use in our race. In conclusion, we suggest our researchers when useing segmental parameters built by other countries, to pay attention to this different effect. |