English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2052/17084 (12%)
造訪人次 : 3833015      線上人數 : 724
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/6411


    題名: Synthesis of magnetic TiO2 nanoparticles as bactericidal photocatalyst
    作者: Ching Ju Monica Chin
    Yu Jie Chang
    張育傑
    Guo Jie Weng
    Chia Yu Shen
    貢獻者: 臺北市立教育大學地球環境暨生物資源學系
    關鍵詞: Bactericidal Ability
    Magnetic Photocatalyst (MPCs)
    TiO2 Nanoparticle
    日期: 2010-08
    上傳時間: 2012-06-28 15:14:37 (UTC+8)
    摘要: The magnetic photocatalysts can provide both a high specific surface area and an alternative for recovering used catalyst from treated water by the application of a magnetic field. In this study, the Fe3O4 nanoparticles were synthesized by co-precipitation. After chemical co-precipitation of ferric and ferrous solution under alkaline condition, the suspension of magnetite nanoparticles were then mixed with TEOT (Titanium (Ⅳ) ethoxide) for sol-gel coating. The separated MPCs (magnetic photocatalyst nanoparticle) were then dried and calcined in 400oC. Magnetic properties of MPCs were identified by superconducting quantum interference device magnetometer (SQUID). The bactericidal ability of synthesized MPCs was evaluated by counting the residual numbers of E. coli after irradiation under a light intensity of 1.0 mW/cm2 at 365 nm. The results show that the MPCs were both anatase and had good crystallinity with clear peaks and insignificant noises after calcination. The SQUID test also reveals that calcination only affects the magnetic susceptibility of the MPC nanoparticles slightly (< 8%). The bactericidal ability of the synthesized MPCs was compared with the commercial TiO2 nanoparticle DegussaTM P25; P25 provided a faster inactivation rate for E. coli in water than MPCs did at the same dosage. The calculated photocatalytic bactericidal rate by P25 is about 3.6 times faster than that by MPCs synthesized in this work. However, the bactericidal rate of magnetic TiO2 synthesized in this work was 5 times than that of other MPCs in the literature. The particles size and surface area of MPCs from this work were about 135 nm and 210 m2/g, respectively. The MPCs from this work have much smaller size and larger surface area; hence there are more active sites for bactericidal reaction.
    顯示於類別:[地球環境暨生物資源學系(含環境教育與資源碩士班)] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在uTaipei中所有的資料項目都受到原著作權保護.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋