English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2471/17084 (14%)
造訪人次 : 3181562      線上人數 : 805
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    University of Taipei > 理學院 > 資訊科學系 > 期刊論文 >  Item 987654321/16972


    請使用永久網址來引用或連結此文件: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/16972


    題名: Post-Modern Portfolio Theory for Information Retrieval
    作者: Tsai, Ming-Feng;Wang, Chuan-Ju;王釧茹
    貢獻者: 臺北市立教育大學資訊科學系
    關鍵詞: Retrieval models;Optimization;Semivariance
    日期: 2012
    上傳時間: 2019-02-14
    摘要: Information Retrieval (IR) aims to discover relevant information according to a user's information need. The classic Probability Ranking Principle (PRP) forms the theoretical basis for probabilistic IR models. This ranking principle, however, neglects the uncertainty introduced through the estimations from retrieval models. Inspired by the Post-Modern Portfolio Theory (PMPT), this paper proposes a mean-semivariance framework to handle the uncertainty. The proposed framework not only deals with the uncertainty but has the ability to distinguish bad surprises (downside uncertainty) and good surprises (upside uncertainty) when optimizing a ranking list. The experimental results shows that the proposed method improves the IR performance over the PRP baseline in terms of most of IR evaluation metrics; moreover, the results suggest that the mean-semivariance framework can further boost the top-position ranking quality.
    關聯: Procedia Computer Science,Vol. 13,P.80-85
    顯示於類別:[資訊科學系] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在uTaipei中所有的資料項目都受到原著作權保護.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋