English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2471/17084 (14%)
造訪人次 : 3188670      線上人數 : 1074
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/12500


    題名: Higher Order Testlet Response Models for Hierarchical Latent Traits and Testlet-Based Items
    作者: Hung-Yu Huang;黃宏宇;Wen-Chung Wang
    關鍵詞: item response theory;testlet response theory;higher order models;hierarchical latent trait;Bayesian methods
    日期: 2013-06
    上傳時間: 2014-09-09 11:44:55 (UTC+8)
    摘要: Both testlet design and hierarchical latent traits are fairly common in educational and psychological measurements. This study aimed to develop a new class of higher order testlet response models that consider both local item dependence within testlets and a hierarchy of latent traits. Due to high dimensionality, the authors adopted the Bayesian approach implemented in the WinBUGS freeware for parameter estimation. A series of simulations were conducted to evaluate parameter recovery, consequences of model misspecification, and effectiveness of model–data fit statistics. Results show that the parameters of the new models can be recovered well. Ignoring the testlet effect led to a biased estimation of item parameters, underestimation of factor loadings, and overestimation of test reliability for the first-order latent traits. The Bayesian deviance information criterion and the posterior predictive model checking were helpful for model comparison and model–data fit assessment. Two empirical examples of ability tests and nonability tests are given.
    關聯: Educational and Psychological Measurement,vol.73no.3,p.491-511
    顯示於類別:[心理與諮商學系] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在uTaipei中所有的資料項目都受到原著作權保護.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋